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Turbulence by E l e c t r o s t a t i c  F luc tua t ions  

by 

C.M. Tchen 

Nat iona l  Bureau of Standards,  Washington, D .C . 

A b s t r a c t  

The s p e c t r a  of turbulence and d e n s i t y  f l u c t u a t i o n s  i n  a plasma are &rived  from 

a hydrodynamic d e s c r i p t i o n .  

cascade process ,  a viscous d i s s i p a t i o n ,  and a d i f f u s i o n  by e l e c t r o s t a t i c  f l u c t u a t i o n s .  

The d e n s i t y  spectrum is governed by a dens i ty  cascade process and a d i s s i p a t i o n  by 

c o l l i s i o n s .  

cascade processes .  

t h e  fo l lowing  t h r e e  subranges: 

range,  and i n e r t i a l - d i f  fus ive  subrange. 

The tu rbu len t  spectrum i s  governed by a t u r b u l e n t  

The s t r o n g  and weak i n t e r a c t i o n s  between waves are considered i n  the 2 

The i n t e g r a l  equat ions f o r  t he  s p e c t r a l  func t ions  are solved f o r  

i ne r t i a l - convec t ion  subrange, v i scous -d i f fus ive  sub- 

* . This  work w a s  supported by the  National Aeronautics and Space Adminis t ra t ion ,  
Cont rac t  R- 1 2  7. 

*, 
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I. INTRODUCTION 

The i n v e s t i g a t i o n  of t h e  equ i l ib r ium spectrum of hydrodynamic turbulence has 

2 been i n i t i a t e d  by Kolmogoroff' and Heisenberg 

e f f o r t s  have confirmed t h e i r  r e s u l t s .  

dynamic turbulence is t h e  cascade process ,  and was e l abora t ed  semi-empirically 

b a s i s  of  t he  Navier-Stokes equation. 

. Later t h e o r e t i c a l  and experimental  

. The e s s e n t i a l  f e a t u r e  of t he  problem of hydro- 

2 
on t h e  

I n  a plasma, t he  f l u c t u a t i o n s  i n  dens i ty  of t he  charged p a r t i c l e s  set  up e l e c t r o -  

s t a t i c  f l u c t u a t i o n s ,  and consequently add a d i f f u s i o n  t o  t h e  above cascade process of 

t he  momentum t r a n s f e r .  I n  t h i s  way, one may conceive t h a t  t h e  hydrodynamic equation 

of Navier-Stokes may be s t i l l  v a l i d ,  when such an e l e c t r o s t a t i c  process of d i f f u s i o n  

i s  incorporated.  On t h e  o t h e r  hand, t he  dens i ty  f l u c t u a t i o n s  should follow a classical  

d i f f u s i o n  equat ion.  It is  hoped t h a t  such a system of equat ions w i l l  d e sc r ibe  plasmas 

of high i o n i z a t i o n  where t h e  e l e c t r o s t a t i c  process is important,  as w e l l  as plasmas 

of  low i o n i z a t i o n  where t h e  e l e c t r o s t a t i c  process is n e g l i g i b l e  i n  the  momentum t r a n s -  

f e r .  I n  t h e  l a t t e r  case experiments of turbulence i n  a weakly ionized gas ( 0.001% 

i o n i z a t i o n )  has been made by Grana t s t e in ,  e t c .  3 . 
L 

A . N .  Kolmogoroff, C.R. Acad. S c i .  (USSR) 3 0 ,  301(1941); 32, 16(1941). -..- < 7 -  

' W ,  Heisenberg, 2 .  f. Phys. 124, 628(1948), 

V .L .  G r a n a t s t e i n ,  S . J .  Buchsbaum and D . S .  Bugnolo, Phys. Rev. Letters 16, 504(1966). 
,, 
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I n  t h e  fol lowing pages, w e  propose t o  use t h e  above system of equa t ions  f o r  

desc r ib ing  a plasma of high and low i o n i z a t i o n s ,  and t o  d e r i v e  t h e  s p e c t r a l  func- 

t i o n s  of turbulence and d e n s i t y  f l u c t u a t i o n s .  

11. FUNDAMENTAL EQUATIONS 

We use t h e  Navier-Stokes equat ion f o r  desc r ib ing  t h e  t u r b u l e n t  f l u c t u a t i o n s  i n  

v e l o c i t y  u of t h e  plasma; t h e  c o l l i s i o n s  between t h e  ionized p a r t i c l e s  and t h e  

n e u t r a l  h o s t  gas are w r i t t e n  i n  t h e  form of a kinematic v i s c o s i t y  LJ . We have 

N 

2 
8 U  a a e N 

( - + u  a t  - = - E + y -  2 m -  
N 

N 

Here X i s  a s t o c h a s t i c  f o r c e  ( n o i s e ) ,  r ep resen t ing  f l u c t u a t i o n s  i n  p re s su re  and 

brownian movements. The p res su re  i s  lumped In t h i s  way, because it is  r e l a t i v e l y  

un inpor t an t  i n  t h e  s tudy of energy spectrun.  

N 

Moreover we s h a l l  assume 

< x u > =  0 . 
b 

F u r t h e r  m i s  t h e  mass, n i s  t h e  f l u c t u a t i o n  i n  number-density, E i s  t h e  s e l f -  

c o n s i s t e n t  e l ec t r i c  f i e l d ,  s a t i s f y i n g  t h e  Poisson equat ion 

- 
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1 

and e is t h e  charge: + 1.1 f o r  ions and -1.1 f o r  e l e c t r o n s .  Sometimes it is  
I 

I convenient t o  introducean electric p o t e n t i a l  cp , such that 

N E = -bp/a?c,. 

A d i f f u s i o n  equat ion i s  used f o r  desc r ib ing  t h e  f l u c t u a t i o n s  i n  concen t r a t ion  

o r  number-density of a plasma: 

where A is  t h e  molecular d i f f u s i o n  c o e f f i c i e n t .  

When w e  introduce the  Four i e r  transform 

Q i k x  
CY- 

N dt,: 1 = dk N h l  u ( t , k )  N e , 

and s i m i l a r  formulas f o r  n and , Eqs. (1) - (3) are transposed t o  
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c 

aD a 2 
( at + 2X k ) < n ( t , k  ) n( t , -k  ) > = -[ dk-' i k f '  < u (k  - k ' )  n (k ' )  H n ( - k )  N > 

N j -  - 
-03 

+ c .  C .  , (5) 

- i k  Q =  E 
N N '  

2 2 where 
-GT- = 4rre /m 

and (c.  c.) r ep resen t s  similar complex conjugate terms. It i s  noted t h a t  the  equa- 

t i o n s  f o r  u and n have been w r i t t e n  i n  t e r m s  of energy. 
N 

111. SPECTRAL DECOMPOSITION 

We int roduce the  following s p e c t r a l  funct ions : 

m 
& < u2 > = dk F(k) 

0 

CD 

4 < n2 > = dk G(k) , 
0 

0 

0 



and G are re lated through formulas (6) :  cp GE Evidently G 

4 4 
= = G ;  G = = G  

k4 GE k2 

Further w e  introduce the notations of v o r t i c i t i e s  : 

03 

R(k) = 2 dk k2F 

(7) I 

0 

J(k) = 2 dk L2G . 
0 

(b 

The Fourier components and the spectral functions are r e l a t e d  by 

k k 
dk F(k) = K dk < u ( k )  u(-k )>  

N N N H N  ? 

0 0 

k k 
J dk G(k) = K r dk < n ( k ) n ( - k ) >  ; 
0 0 

I N  N N 

and 2X is the length of truncation 
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of the  Four i e r  decomposition of u(x) and n(x) . On t h e  r i g h t  hand s i d e s  of ( 8 ) ,  

t h e r e  are t r i p l e  i n t e g r a l s  

NrV N 

k 

s dk 
0 

i n  a sphere of r ad ius  k , 

I n  t e r m s  of those  n e w  no ta t ions ,  t he  energy equat ions  (4 )  and (5) become 

k a 
at - - dk F(k) = v R(k) + T(k) + DE(k) , 

0 
(9) 

k 
- a dk G(k) = J (k)  + W(k) ; at 

0 

where 

and 

k 

0 

DE(k) = IC dk < z (k )  u(-k) + E(-k) u(k) > . - m  H N  N N cy- 

The t h r e e  func t ions  T, W and D 

fo l lowing  sect ion.  

w i l l  be evalua ted  by approximate methods i n  t h e  E 
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IV. CASCADE PROCESS IN STRONG INTERACTION AM) SPECTRA IN THE INVISCID SUBRANGES 

We introduce a phenomenological theory based on a n  ex tens ion  of t he  mixing- 

length  hypothesis .  

n and a v e l o c i t y  u of the  turbulen t  nledium, i n  which t h e  concent ra t ion  is  embedded, 

The la t ter  states t h a t  from the  c o r r e l a t i o n  between a concent ra t ion  
1 -  

N 

t h e r e  r e s u l t s  a t r anspor t  of concentrat ion by turbulence,  determined by two f a c t o r s :  

( i )  a macroscopic dens i ty  grad ien t  of a la rge  sca l e ,  and ( i i )  a d i f f u s i o n  c o e f f i c i e n t  

of t h e  tu rbu len t  medium ( u l ) ,  cont r ibu ted  by smaller eddies .  I f  we d i s t i n g u i s h  two 

groups of eddies :  

and a group of smaller eddies  

a group of la rge  eddies k , car ry ing  a dens i ty  grad ien t  - i k  n ( k ) ,  
N N N  

k ' ( k '  > k) , con t r ibu t ing  t o  a d i f f u s i o n  c o e f f i c i e n t  
N 

t hen  t h e  mixing of t h e  two waves r e s u l t s  i n  a t r anspor t  of concentrat ion by turbu- 

lence  

i k  n(5)  . 
j 

n(k ' )  u . (k-k ' )  = - (u,C),, , 
N J N N  

Also w e  have 

i k l  n(k-') u . (k-k ' )  1 N C Y  = (ue),, , k k2 n(kJ . 
J 

S i m i  lar  1 y 
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Upon substitution of relations (11) into expressions (lo), we find 

and 

k 

2 from dimensional reasonings . Here X is a numerical constant. 

We may remark that (d) , which is the basis of , is a diffusion by velocity 
fluctuations, while 

e - < E u >  , m 

which forms the basis of D , is a diffusion by electrostatic fluctuations. Thus 

we can find the structure of D (k) by writing 
E 

E 

k 
DE(k) =const dk GE kP 9 

0 
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where cy and b a r e  found t o  be: 

= -/3 = 3/4 , 

by s a t i s f y i n g  the  dimensional condi t ions .  Hence 

3 3/4 
k 

D ~ ( k )  * X1 dk (G/k ) 
0 

where x, = numerical cons tan t  W 3 . 
Upon s u b s t i t u t i o n  of (13) and (14) i n t o  ( 9 ) ,  (1Oc) and (12), w e  can r ewr i t e  

Eqs.(S) in  t h e  form: 

0 0 

and 

- -  dk G(k) = (A + y) J(k) , at 
0 

I f  w e  introduce the no ta t ions  

P, 
V i 
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t hen ,  f o r  equ i l ib r ium s p e c t r a ,  Equations (15) reduce t o  

k 

These are t h e  2 b a s i c  equat ions f o r  determining t h e  spec t r a l func t ions  of turbulence 

and concen t r a t ion  (or e l e c t r i c  f i e l d )  under the  condi t ions of s t r o n g  i n t e r a c t i o n .  

We s h a l l  i n v e s t i g a t e  t h e  s p e c t r a l  laws i n  the  i n v i s c i d  subranges, also c a l l e d  

the  i n e r t i a l  and convective subranges, where 

In these  subranges, t h e  system of equations (15) reduces t o  

* 

and 
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Afte r  s u b s t i t u t i o n  f o r  

t h e  f i r s t  equat ion of t he  system becomes: 

vk from t h e  second equat ion,  and a f t e r  d i f f e r e n t i a t i o n ,  

k 

The second term between the b racke t s  i s  n e g l i g i b l e ,  as the i n e r t i a l  subrange of the 

G spectrum does not c o n t r i b u t e  much t o  t h e  v o r t i c i t y  J(k) , Hence we ob ta in  

c x  F = x1 G dk (G/IC?~/~  

k 

The new system of equat ions (17) and (16b) y i e l d  t h e  following s o l u t i o n s :  

and 

where 

-3  F = A k  , 

1 G = B k -  ; 

4 7 2/15 
A = ( a  b )  7 

2. Lb/l5 B = (am’ b - ) ’  ; 

7 x a = x 1 / 2 ~  

b = 2cx/X . 
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From formulas ( 7 )  and (18b), w e  f i n d  

G = B &  k-5 . (1CC) 
Q 

, 
I '  

alone determines t h e  i n e r t i a l  and ex It is t o  be noted t h a t  t h e  d i s s i p a t i o n  r a t e  

convective subranges of both F and G spec t ra .  The tu rbu len t  spectrum F i n  

formula (18a) drops f a s t e r  than  the  k-5'3 l a w  (Kolmogoroff law), because here  t h e  

cascade is Jra-iied by an add i t iona l  d i f f u s i o n  from e l e c t r o s t a t i c  f l u c t u a t i o n s .  

V. SPECTRA IN THE VISCOUS AND DIFFUSIV SUBRANGES WITH STRONG INTERACTION 
BETWEEN TURBULENCE AND ELECTROST.!' 'i .L FIELD 

In the  viscous and d .,.iusive subrunges, w e  have 

The viscous and d i f f u s i v e  d i s s i p a t i o n s  being dominant at l a rge  k , t h e  d i f fus ion  

by e l z c t r o s t a t i c  f l u c t u a t i o n s  is neg l ig ib l e ,  and t h e  system of equat ions (16) 

reduce t o  

(v  + Vk> R(k) = by > 

A d i f f e r e n t i a t i o n  gives  

3 4  2y k% - X (F/k ) R(k +ID) = 0 

2X k2G - X (F/k3)' J(k + 110) = 0 

, 

. 



- 14 - 

. 

The solutions are 

and 

With those solutions (20), it can be verif ied that the e lectrostat ic  diffusion 

k 

i s  indeed small, a s  compared with the cascade flow 

i n  order t o  j u s t i f y  such an assumption used i n  Eqs.(l9). 

The f i r s t  of the solutions (20) i s  in agreement with the viscous law of the 

2 
turbulent spectrum found by iieisanbeig . 
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V I .  WEAK INTERACTION BETWEEN TURBULENCE AND ELECTROSTATIC FIELD 

The cascade process based on t h e  mixing-length r e q u i r e s  a condi t ion  of s t rong  

i n t e r a c t i o n .  For a weak i n t e r a c t i o n ,  we can rewrite Eq. (3) i n  i t s  Four ie r  

t ransform : 

an(kJ @ 2 + d k ' i k !  u (k -k ' )  n ( k ' )  H = -Ak n(k)  N . a t  - J j - -  

By mul t ip ly ing  each member by i t s  complex conjugate,  and assuming a s t a t i o n a r y  

process  we have 

b) 

2 4  k < n(kJ n(-k)> = r ,r dk' dk" k; k',' < u. (k-k ' )  u .  (-k+k") n ( k ' )  'y n( -k") H > . 
J -- 1 -- -1 N H h r  

A weak i n t e r a c t i o n  between u and n may be assumed, when the  spectrum of n 
N 

undergoes a d i f f u s i v e  d i s s i p a t i o n ,  while  the spectrum of 

i n e r t i a l  cascade process .  

u i s  maintained i n  i t s  

This occurs when w e  have 

The r a s e  of weak i n t e r a c t i o n  i s  r e l evan t  t o  a plasma where a weak concent ra t ion  

of ion ized  p a r t i c l e s  are c a r r i e d  by a s t rong  t u r b u l e n t  f l u i d .  The l a t t e r  f l u i d  

can  be considered as n e u t r a l ,  t h e  weak e l e c t r o s t a t i c  d i f f u s i o n  being n e g l i g i b l e .  
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For a weak interaction, the arguments of N u and n in the integrand are of 

different order of magnitude: 

I .  
k-k' > > k' 
" 

and 

o r  

k > > k '  > 
Lv N 

k > > k" . 
N N 

Consequently we can write 

< ui(k-k') u.(-k + k") n(k') n(-k") N > 
N U  J N 

= < u.(k) u.(-k) > < n(k') n(-k")> . 
.y N 1 -  J "  

Hence 

2 4  X k < n(k) cy n(-k) N > 
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for isotropic turbulence. The spectral functions follow 

I 

where 

2 4  1 k G =  - 3 J o o F  ; 

Equation (21a) can be transformed into the following familiar form: 

- 
' ( + J(k) = 

with the following new values of % and : 

m 

% = 5  dk F/k2 , 
k 

and 

. 

. In the above transformation, we have iieglscted the t c r m  

OD 

-2 vk f dk k2 G , 
k 
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as compared to 

k 

0 
-2Gk dk k2 G , 

1 -  

- for large k . 

When the G spectrum undergoes a diffusive dissipation, while the F spectrum 

is in the inertial cascade process (inertial-diffusive subranges), the solution of 

Eq. (2la) is 

k-4 F . Jm G =  - 
3x2 

I If the F 

diffusion by electrostatic fluctuation, then 

spectrum assumes the Kolmogoroff law of the inertial subrange, without 
I 

and 

-4 .' 
where 
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The c o n t r i b u t i o n  of t h e  d i f f u s i o n  t e r m  

k 

f o r  G i n  t h e  d i s s i p a t i v e  subrange a t  large k , is  n e g l i g i b l e .  

However, it i s  t o  be remarked t h a t ,  when a s t rong  i n t e r a c t i o n  could s t i l l  

e x i s t  between t h e  turbulence and t h e  e l e c t r o s t a t i c  f i e l d ,  i n  t h e  d i f f u s i v e  subrange 

of  t h e  G spectrum, e s p e c i a l l y  near t h e  lower k p a r t  of t h e  subrange, then in s t ead  

of Eq. (21b),  w e  would use Eq. (16b). After  d i f f e r e n t i a t i n g  the  l a t te r  equat ion,  

w e  would g e t  

3 L  2 -y  (F/k )‘ J ( k  + O D )  + 2X k G 0 , 

w i t h  t h e  s o l u t i o n :  

3 c. 

.. p o r t i o n  of t h e  d i f f u s i v e  subrange of t n e  2 apectrr;~;; I:: 8 veakly ionized plasma. 

This  l a w  (23) w a s  used by Grana t s t e in ,  Buchsbaum and Bugnolo t o  i n t e r p r e t  t h e  i n i t i a l  



- 20 - 

V I I .  CONCLUSION 

The spectrum of tu rbu lence  is  governed by a tu rbu len t  cascade process ,  a v iscous  

I d i s s i p a t i o n ,  and a d i f f u s i o n  by e l e c t r o s t a t i c  f l u c t u a t i o n s ,  The d e n s i t y  spectrum 

which c h a r a c t e r i z e s  t h e  d i s t r i b u t i o n  of d e n s i t y  o r  e l e c t r o s t a t i c  f l u c t u a t i o n s ,  i s  

governed by a d e n s i t y  cascade process ,  and a d i s s i p a t i o n  by c o l l i s i o n s .  The turbu-  

l e n t  cascade i s  c o n t r o l l e d  by a s t r o n g  i n t e r a c t i o n  between waves, while  t h e  d e n s i t y  

cascade may be c o n t r o l l e d  by a s t rong  i n t e r a c t i o n  o r  a weak i n t e r a c t i o n  between t h e  

d e n s i t y  and the v e l o c i t y  waves. The mechanism of s t rong  i n t e r a c t i o n  is  formulated by 

a phenomenological theory ,  based upon t h e  mixing-length hypothes is  extended t o  waves. 

The mechanism of weak i n t e r a c t i o n  is formulated by degenera t ing  t h e  f o u r t h  order  

c o r r e l a t i o n  i n  d e n s i t y  and v e l o c i t y  f l u c t u a t i o n s  i n t o  a product of two second o rde r  

c o r r e l a t i o n s .  

i n t e g r a l  equa t ions .  The s o l u t i o n s  f o r  t h e  fol lowing cases  are found: 

The equat ions  determining the  s p e c t r a  are der ived i n  the form of 

Case (a). In a plasma of high i o n i z a t i o n ,  as cha rac t e r i zed  by the  dominant 

r o l e  of t h e  e l e c t r o s t a t i c  d i f f u s i o n  i n  t h e  tu rbu len t  spectrum, t h e  i n t e r v a l s  of t h e  

i n v i s c i d  ( i n e r t i a l  and convect ive)  subranges of t h e  two s p e c t r a  co inc ide ,  when 

? 
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Since t h e  i n t e r v a l s  of t he  i n v i s c i d  subranges coincide,  and t h e  i o n i z a t i o n  

is h i g h ,  a s t r o n g  i n t e r a c t i o n  should govern the cascade, and t h e  s p e c t r a  are 

found t o  be 

F = const k-3 , 

.. and 
-1 

G = const k J 

see (IGa) and (1Bb). The tu rbu len t  spectrum drops f a s t e r  than t h e  5/3-law of 

Iblmogoroff, because the  cascade is  accompanied by a s i n k  i n  t h e  form of e l e c t r o -  

s t a t i c  d i f f u s i o n .  

Case (b ) .  I n  t h e  c o l l i s i o n a l  (viscous and d i f f u s i o n a l )  subranges of t h e  two 

s p e c t r a ,  f o r  values  of k such t h a t  

t h e  s p e c t r a  follow t h e  km7 law, see (20):  

F = const  k-7 J 

- and 
b 

G = const  k-’ 

The e l e c t r o s t a t i c  d i f f u s i o n  a t  such high va lues  of k is  n e g l i g i b l e .  Thus the  

same r e s u l t s  hold f o r  plasmas of high and l o w  ion iza t ions .  
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I Case ( c ) .  Consider a plasma w i t h  a low i o n i z a t i o n ,  where a small number of 
a 

charged par t ic les  d i f f u s e  i n  a tu rbu len t  f i e l d  of high Reynolds numbers. Moreover, 

. t h e  e l e c t r o n  temperature i s  much l a r g e r  than the  gas temperature,  so t h a t  

It fol lows t h a t  t h e  d e n s i t y  spectrum cannot maintain a s i z a b l e  convective subrange, 

bu t  no t i ceab ly  w i l l  undergo a molecular d i f f u s i v e  regime, with 

while  t h e  tu rbu len t  d i f f u s i v i t y  & , see (21c), i s  being provided by t h e  t u r b u l e n t  

spectrum maintained a t  the i n e r t i a l  subrange. 

t h e  d e n s i t y  cascade i s  con t r ibu ted  by waves i n  weak i n t e r a c t i o n s ,  see (21b) and (21c).  

It fol low t h a t  t h e  d e n s i t y  spectrum i n  the d i f f u s i v e  subrange w i l l  be 

Because of such d i f f e r e n t  regimes, 

-1713 G = const  k Y 

C 

3 

see (22b). 


